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The general (unrestricted) three-body problem is investigated in the case when the force of mutual attraction between the bodies 
is proportional to the nth power of their distance, where n is an arbitrary real number. A new description is given of the plane 
problem, based on the introduction of the following Lagrange variables: r - - the  square root of half the polar moment of inertia, 
~ - - the  angle between the two sides of the triangle, and y-- the natural logarithm of the quotient of those two sides. The first 
variable characterizes the size of the triangle, and the other two, its configuration. Routh's equations are derived, in which the 
variable • is 'almost separated' fromy and ~t; the system of equations is reversible. In the special case of the restricted problem, 
i.e. when the mass of one of the bodies tends to zero, the variables are completely separable, so that the problem describes only 
the change in the configuration of the triangle. 

It is shown that the qualitative results, known for Newtonian interaction (n = -2), are valid throughout the range -3 < n < 
-1. In particular, for these values of n 'elementary' methods of analysis are used to solve the problems of Hill stability for a pair 
of bodies, the existence of final motions relating to hyperbolic-elliptic motions is established for n = -2, and a local analysis is 
carried out of the neighbourhoods of the classical liberation points. 

Local analysis show,~d that in the neighbourhood of collinear points two families of Lyapunov periodic motions exist, into 
which the family of two-dimensional "whiskered" tori degenerates. In the linear approximation, the problems of the stability of 
triangular points in the restricted and unrestricted formulations are equivalent to one another. Hence the triangular elliptical 
solutions of the unrestricted problem are stable throughout the domain constructed by Danby for the restricted problem. Allowance 
for the small non-zero mass of one of the bodies may make the other two bodies leave the unperturbed circular orbit; there is 
no such effect in the restricted problem. Copyright © 1996 Elsevier Science Ltd. 

1. T H E  V A R I A B L E S  OF THE P R O B L E M .  R O U T H ' S  F U N C T I O N  

The unrestricted three-body problem, i.e. the problem of the motion of a mechanical system consisting 
of three point masses Po, P1 and P2 of masses Mo, M1 and M2 which attract one another according to 
Newton's law, has a 300-year-history and was first considered by Newton himself. We shall study the 
three-body problem for an interaction force in which the force F 0 with which the points Pi and Pj attract 
one another is proportional to an arbitrary power n (n ~ -1) of their distance rij 

Fq= fMiMjri~ ( i , j=O, I ,2 ;  i ~  j )  (1.1) 

where f is some constant. This formulation of the problem goes back to Laplace [1], Routh [2] and 
Lyapunov [3] and has applications not only in celestial mechanics but also in stellar dynamics. The value 
n = -2  corresponds to Newtonian attraction. 

The points P1 and P2 are assumed to be moving relative to a system of coordinates with origin at P0 
(Fig. 1). 

Then the absolute velocity of Pc is 

Vo=- (mlV l r+m2V2r ) ,  m i = M i / M  ( i = 0 , 1 , 2 ) ,  M = M o + M I + M  2 (1.2) 

where Vlr, VZ- are the relative velocities of P1 and P2, respectively. Substituting these values into the 
expression for the kinetic energy T we obtain 

2 
2 (1.3) 2TM -I = ~, mi(1 -- mi)Vir -- 2mlm2VlrV2r 

i=l 

or, in polar coordinates ri, 0i (i = 1, 2) 
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P, 

Fig. 1. 

2 T M  -I = m I (1 - m, )(if2 + rl2012 ) + n, 2 (l  - I/12 ) (~2 + 1.2022 ) _ 

- 2 m l m  2 {[ rl'1- 2 + r11-20iO 2 ]Cos(O 2 -- 01 ) + ( r  I r20 i - 1-2 rl'02 )s in(O 2 - 01 )} 

Next, introducing new dimensionless parameters ~i+j  = mirnj (i, J = 0, 1, 2; i # j)  and taking into 
account that 02 = • + ¥(O = 01), we have 

2TM_I =($.tl + ~t3)(fi.2 + Fi2~-2)+(p.2  + , 3 ) [ r 2 2  + r 2 ( ~ f  + ( ~ . ) 2 ] _  

-2Ix 3 {[fi'r~ + fi r20"(W" + O')] cos W + [lir2q)" - r2rl" (W" + O" )] sin W} 

It is readily seen that the variable • is cyclic, corresponding to the area integral. Carrying out the 
procedure of ignoring a cyclic coordinate and forming the Routh function of the problem, we obtain 

= M - l a T l a @  • =[it I +la2e 2)' +113(I +e  z.~" _ 2 e  ~" COS ~I/)]FI2(I)" + 

'" +[(ix2+lx3)e2y-~t3eYcosw]fi2~'-g3e~'fi2sin~lFy" 

2R = [It I + Ix~ + (~t 2 + la 3 )e 2y - 21a3e y ]rl 2 + (Ix 2 + la 3 )eZ"[fi 2 (y.2 + ~1/.2 ) + 2fi rl.y. ] _ 

• - - z +~t2r~ +la~r:)O-2 +U. -21.t3e~'[fifi'y cosW- tiriw smw]-(lalq . . 

U _ f r i , f  itd ~n+l  hA M F "n+l U . = - - ~ ,  U - - n + l ~ , , ~ o , , , i q  +MoM2r~'+l+, , , i  2 3  }, Y =lnr2 
rl 

where r3 is the distance between the points P1 and P2, and U is the force function of the problem. 
To continue, we replace the distance rl with a new variable r 

z :  = t,4 +.. .4 = UoU:? + UoU,4 + u,u 4 
( M o + M~ + M 2 )2 

which has the meaning of the square root of half the polar moment of inertia, divided by the mass of 
the entire system. This choice is dictated by the following consideration. The Lagrange-Jacobi relation 
[4, 5]--the differential equation for the polar moment of inertia, is of fundamental importance in celestial 
mechanics. This equation is a differential expression of the law of conservation of total mechanical energy 
and has been the subject of many studies [6-11]. When r , y  and W are taken as independent variables, 
one of the equations of motion is in fact the Lagrange-Jacobi equation, while the other equations close 
the system of differential equations for the motion of the three-body system. 

Omitting the very laborious intervening algebra, we can write the final expression for the Routh 
function 
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~2 rn+lFo (n # - i )  R = r "2 + r2F2 + F t - - ~ +  (1.4) 

la .2 ¥.2 
F2 -- -~2-- (y + ) (~ ~" l,tl~t2 + ~[1~3 + ~2~3) 

/~ = "-~[~3(q" COSq +y" sin W)-  (~t 2 + ~t3)eYW "] 

fM ( ~(n+,),2 {~t, e-(n*')y,2 + ~2 e(n+0yl2 + ~t3 (e y+  e -y _ 2 cos ¥)(n+,)12 } 2 

S= p.le-Y'+ I.t2e y + ~t3(e y +e -y - 2cos W) 

Now, knowing the Routh function, we can derive the Hamiltonian of the problem 

2 S 2 
H = P i + 4  4[.tr 2 [(P¥ -b¥)2  +(P"-bv)2]+--~r2-rn+lF O .  (1.5) 

b~c=-~[~t3cos , - ( l le+lX3)e"] ,  b,. =-~ l . t3  sin V 

where Pr, Pv' P" are the momenta corresponding to the variables r, ~, y, respectively 
The dlstlnctwe features of this descnpUon of the problem are as follows: The new parameters of the 

problem are the dtimensionless products ~). of the masses of the bodies Pi and Pj, and these parameters 
reflect the interaction of the bodies. The equation for the variable r 

ro 2r'" = 2rF 2 + + (n + l)r ~ (1.6) 

is in fact the Lagrange-Jacobi equation• Finally, the problem is described by the Routh or Hamilton 
equations, which are also reversible. Thus, in the case of the Routh equations, the fixed set is the 
hyperplane M = {r,y, ~, r,y, ¥: ~ /=  0(mod n), r = 0,y = 0}, and for the Hamilton equations it is M1 
= {r,y, V, Pr, Py, Pv: W = 0(mod ~),Pr = O, py = 0}. 

It is also noteworthy that the part of the Routh function (1.4) that is quadratic in the velocities is 
already reduced to isometric coordinates [12, p. 537]. 

2. S O M E  C O R O L L A R I E S  OF T H E  E N E R G Y  I N T E G R A L  

The system of equations of motion with the Routh function (1.4) has an energy integral 

~2 rn+l Fo r "2 + r2F2 + ~ r  2 - = h (h = const) (2.1) 

It follows from the form of the function Fo(y, V) that Fo(y, V) takes positive (negative) values for n 
< -1 (n > -1),  and it is unbounded i fn  < -1 and tends to + ~  asy ---> ___oo. If n > -1,  then Fo(y, u/) is 
bounded. 

Consider the function 

g(p.q ) = p-~,,+ t )t2Q 

P=P.I +[ ' t2P+~3q,  Q=l.tl + ~ 2 P  (n+l)/2 +[A3q (n+l)/2 

which is identical with F 0 apart from a constant factor if one puts 
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p=e2r,  q = l + e  2r-2eycos~ 

In the domain p > 0, q I> 0 this function has a unique stationary point p = q = 1, since P(p, q) > 0. 
Thus the function F0, apart from the stationary points y = 0, V = ___x/3 (the Lagrangian triangular 
solutions), can have only stationary points such that 

3qlb~ = 2eYsin~ = 0 

that is, collinear solutions. 
Let us determine the nature of the extremum of F(p, q) at the point p = q = 1. Calculations show 

that i fn  2 > 1, the function g(p, q) has a global minimum a tp  = q = 1, equal tog* = v (1-~)r2, v = ~tl + 
Ix2 + [t3; the degree sign means that the functions are evaluated at the stationary pointp = q = 1. Hence 
it follows that the values ofF0 at the collinear stationary points, when n < 1 (n > 1), are greater (smaller) 
than their values at the Lagrangian triangular points. 

Let us proceed now to the conclusions. 

Theorem 1. If n > 1, the Lagrangian triangular solutions of the unrestricted three-body problem are 
secularly stable for any values of the masses. 

Remark. The  existence of the triangular solutions for a Newtonian law was first established by Lagrange 
[13]. Laplace [1] extended the result to the case of arbitrary n. 

The proof of Theorem 1 follows from the fact that g(p, q) is positive definite in the neighbourhood 
of the point p = q = 1, and from the energy integral (2.1). Routh's theorem [14] with Lyapunov's 
supplement [15] are used here. 

The Lagrangian triangular solutions are found from the condition for the function R0 to be stationary. 
For this solution 

n - I  fl 2 
n + !  4r02' 

: r  °' cvl<-'"2l ''<+3, 
"° = ' °  L t7,J _1 

In the neighbourhood of a stationary point 

R 0 - P~ = - (n + 3)8r 2 - 

[~2 (n_  l)la3 {[1 _ 3 (g, + g2)]aq/2 + 2af~(g I ) y S , +  3 } -~t 2 ,- ~(I-ti +la2)Y 2 
2r0 2 v 

8r = r -  r °, 8 ~ = q / - / t / 3  

Hence it is clear that when n < -3 the number of negative Poincar6 coefficients is three, and, by a 
well-known theorem due to Kelvin--Chetayev [16], the Lagrangian triangular solutions are unstable. 
When -3 < n < 1 the degree of instability is two, and gyroscopic stabilization is possible; conditions 
to that end were determined by Gascheau [17], Routh [2] and Zhukovskii [18]. 

Theorem 1 is a corollary of the fact that the function -Ro(r,y,  ~ )  attains a local minimum at the point 
• = r°,y = 0, ¥ = ~t/3 when n > 1. The fact that the minimum a tp  = q = 1 of the function g(p, q) is 
global, together with the form of the function R0, imply that • = r*,y = 0 is a global minimum point of 
the function -R0 when n > 1. This implies that the bodies cannot collide if h < h* (this upper bound 
will be determined below). The fact that a triple collision cannot occur when n > -1 follows from the 
energy integral (2.1). In a double collision y ---> __.00 ory  ---> oo, ~ ~ 0. In this casesg cannot exceed one 
of the numbers 

(I.t z +Ix3) ~"-t)/2, (lal +~t3) C"-t~j2, (I-q +~t2) C'-~>~2 

Therefore, if 



A study of the plane unrestricted three-body problem 353 

~2 ~r_t,,+l ) 
- F  o <~ h - - ~ 7  2 J 

we obtain -Fo < b/(n + 1), and a double collision is impossible. The function 132/(4r 2) + br n+l, however, 
is always greater than 

= 2 . + i  k7 ) 

Theorem 2. When n > -1 the motion in the unrestricted three-body problem is stable in Lagrange's 
sense and triple collisions are impossible. When n > 1 motion with energy constant h < h* occurs without 
double and triple collisions. 

Now let -3 < n < -1 and suppose that h < 0. It follows from the energy integral that 

2 
FO (Y, W) >~ G(r) = ~-- r -(n+ I) _ hr-(,,+3) (2.2) 

4 

In the range of n values under consideration, the function G(r) reaches a minimum value 

2h - ' '+' ' '2 
Z -  n + 3 L 4 h  n + / J  for r2 _ n + l  2h n+3  

where  ~2 = _hl~2 :in the case of Newtonian interaction. 
The inequality 

Fo(Y, V) ~ Z (2.3) 

is known in celestial mechanics [19] in the case n = -2  as Golubev's inequality; it is used to solve the 
problem of Hill stability in the unrestricted three-body problem. 

The function F0 has a global minimum at the points L4, 5(0, +re/3), and also three collinear saddle- 
points ~. (j = 1, 2, 3). The proof of the existence of just the three collinear points, the nature of the 
extremum of F0 aLt these points and the comparison of the values of F0 at these points is extremely 
cumbersome and is omitted here. We will merely point out that it is based on investigating the properties 
of the function S(I~) = Og/3~ (~ = e y, sin V '-- 0), and on determining the sign of O2g/Ov2 at points where 
S(~) = 0. One must take into consideration that the mixed derivative of q(~, ~) vanishes at the collinear 
points. 

In the general case M0 > M1 > ME, we have 

F0(L2) > Fo(L3) > Fo(L0 > Fo(L4) = Fo(Ls) 

and the level curves of F0 are as shown in Fig. 2. We choose Z as the parameter of the problem. Then 
for Z > F0(L2) the motion will occur in the hatched domains in the figure, and one obtains Hill stability 
of two bodies, P0 and Pa (domain 1), P0 and P2 (domain 3), or Pl and P2 (domain 2). When F0(La) < 
Z < F0(L2) the pair of bodies P0 and P1 is Hill stable, but when Z < F0(L3) Hill stability can no longer 
be guaranteed for any pair of bodies. 

Now, considering the special cases in which some of the bodies P0, PI, P2 have the same mass, one 
can extend to the range -3 < n < -1 all conclusions obtained in [19-22] for the case n = -2. The 
qualitative aspect of the problem is quite clear if one bears [19-22] in mind. The actual calculations 
are omitted. 

One more problem needs attention. It follows from (2.2) that in the range -3 < n < -1 one has F 0 
-~ ~ as r -~ oo or r ~ 0. In that case one body (P2) will always remain relatively distant from the pair 
P0 and P1. This immediately implies, for example, Sludskii's theorem (see, e.g. [4]) that triple collisions 
are impossible when 132 ~ 0. 



354 V.N. Tkhai 

Fig. 2. 

3. E X T E N S I O N  OF A T H E O R E M  OF B I R K H O F F  

A comparison of the differential equation (1.6) and the expression (2.1) for the energy integral 
immediately leads to the important differential equality 

dF. I dr=(n+ 3)r-nF2, ~ = Po -rl-"F2 (3.1) 

For every r, the function - F .  may be treated as the energy determined solely by the configuration 
of the triangle PoP1P2 but not by its size. It follows from (3.1) that when n > -3 the function increases 
and decreases together with r, while when n = -3 the system has an additional first integral F .  = const. 
Thus, when n > -3-- this  includes Newtonian attraction--the law of conservation of energy is satisfied 
in such a way that, as the polar moment of inertia increases, the energy determined only by the 
configuration of the triangle decreases if the configuration varies at the same time; an energy transfer 
occurs. We also note that the inequality dF./dr >1 0 for Newtonian interaction was first derived by 
Sundman [8]; it was fundamental to his verification that the series he constructed do indeed converge. 

Equation (1.6) may also be formulated for the polar moment of inertia J = 2r 2. If one then takes the 
energy integral (2.1) into account, this gives 

J "=  2(n + 3)U. + 2h (3.2) 

Hence it follows that if n ~< -3, any motion with non-positive energy (h ~< 0) includes a triple collision. 
In that case there are no motions for which r ~ o~. Indeed, letting r ~ oo in (2.1), we get F ,  ~ 0~, which 
is impossible by (3.1). When n > -1 the energy, as follows from the integral (2.1), is always positive; 
this case was considered in Section 2. 

Birkhoff's result [6] holds for a more general interaction (1.1), provided that the exponent n lies in 
the range -3 < n < -1. The proof (see [23]) follows the arguments used in [6] for the case n = -2  
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almost word for word; it is based on the inequality 

P ~ - ~ - ~ - - ~ \ ~ )  (3.3) 

first obtained by Birkhoff for the case n = -2; here p is the distance from the body P2 to the mass centre 
of P0 and P1 (Fig. 1). 

It follows from the energy integral (2.1) that r~+lF0 + h />  0. Hence rl, the least of the distances ra, 
r2 and r3, does not exceed a certain limit 

_< I fMv ]-I/Cn+l) 
q ~ L ~ J  = r, 

If p > 2r.,  then r2 I> p - rl > p/2, r3 I> p - rl > p/2 and the same distance is the smallest (Fig. 1). If 
at the same time condition (3.3) holds and the inequality p > 2r, is true, both these conditions will 
continue to hold a.t all times, proving that p will increase without limit as t ---) +oo. If p ~ oo, then also 
r ~ += ,  because 

2 r  2 ~¢rl 2 +( [12  +123)92,  × ~tl l im 2r2  = - - -  =ja2 +~.~ ~ 0  
ril 0 + rll I p-~+~ p 

We will now show that if r ~<d, where d is some sufficiently small number, we have r ---) +oo as 
t --¢ +oo. First, it fallows from the energy interval that t 2 ~< 2U. Thus 

~rl2t]l. 2 ~ - -  2fMv qn+3 <~---2fMv r,~+ 3 (n + I < O) 
n + l  n + l  

In addition, we have 

2rr" = ×tif f" +(~2 + ~t3)PP" 

Therefore,  if 

I fM p(,~+3)/2 (3.4) 2fMv .r,(n+3)12 +(~t 2 +~3) (n+ I)2" 2rr" >×  (n+ 1)× 

then inequality (3.3) is also true. The right-hand side of inequality (3.4) may be written in a form 
symmetric with re'spect to Ix1, ~t2, Ix3 depending only on r. We have 

)-(n+3)/4, 2 r  2 ;~ (i.i.2 +!.1.3)92, pU,+3)/2 ~< (2r2)O2+3)/4(~t2 + 3 112 +~t3 ~ V 

Therefore,  inequality (3.4) will certainly be true if 

2rr" >>. a[_ 2 fMV2 r,(n+3)12 _[~-~--20-n)/4 Vtl-n)/4 r(n+3)/2 
n + l + l 

Now, for rl < r .  we obtain 

(bt2 +123)92 = 2 r  2 _ ×rl 2 > 2 r  2 _ x r  2 

Therefore,  p > 2r. if 

2 r  2 /> 5Vr  2 > [ x +  4(I.t 2 + l a 3 ) l r  2 
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Thus, if the system reaches the domain 

r>~ r, rr" >~F---h + / 7 /  (2v )  -('+1)/4 (3.5) 

at some time, it will remain there, and moreover r --> +.o as t --+ +~ .  
We now rewrite the energy integral in the form 

_ p 2  
F, - - -  r -(''+3) + (r  "2 - h)r -(''+l) 

4 
(3.6) 

The least value o f F .  on the boundary of the domain (3.5) is defined by the expression 

A = 5vh T +(2v)  -(n+l)14 +1 r~ r, (3.7) 

It follows from (3.1) that if at some time the system was in one of the domains 

r ~ d  (3.8) 

d~r<~r , . ,  r'>~O, F , ~ A  (3.9) 

then after some time it will necessarily reach the domain (3.5) and r ~ + ~  as t --+ +~ .  By (3.5) and 
(3.6), the values of d and r** are defined by the following relations 

~Zd-(n+3) - h d  -(n+l) = A 
4 

p2 _-(n+3) _ ¢ ..2 I - -  { ~(n+3)/2 ,IV + |  r.. / (2V) -{n+l)14 - - " ' 4  T , , . . - h ) r . ~  ("+0 =A, r..r..=a/-~ ,~-~ !v--~-.) 

where d is the least and r** the greatest root of the appropriate equations. 

Theorem 3. If the system reaches one of the domains (3.5), (3.8) or (3.9) at some time, then as the motion 
progresses one of the bodies will go off to infinity and the other two form a Hill-stable pair of bodies. 

Note that, because of the existence of the domains (3.5) and (3.9), one of the bodies can go off to 
infinity not only from a position close to triple collision. This has been verified numerically [9, 10]. 

Condition (3.8) is sufficient for one of the bodies to go to infinity. This is also possible in the case 
when the system of bodies belongs to the fixed set M. In such motions, the body P2 approaches P0 and 
P1 from infinity, forming at a certain time a rectilinear configuration with them; it then leaves the two- 
body system P0 and Pa and goes off to infinity. 

t/r__.4~,,/,~ 2 '/r / 

/ F. 
I 

t" Fig. 3. 
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A descriptive geometrical interpretation of the results may be obtained in three-dimensional 
space (~, i/r, F . ) .  In that space formula (3.6) is the equation of the surface of the energy integral for 
every (13, h) (Fig. :3). Formula (3.1) means that over the visible part of the surface (t > 0) the motion 
takes place to the right of the plane F .  = A. The intersection of this plane with the curve t = 0 defines 
d, and the domain (3.5) is hatched. Clearly, the system may reach (3.5), generally speaking, from any 
point of the surface as represented. The Birkhoff curve is numbered 1 and the Szebehely curve is 
numbered 2. 

Steady-state solutions are represented by the extreme left point of the surface, and periodic solutions 
with fixed triangle configuration are represented by the curves cut from the surface by planes F .  = 
const. 

Note that Fig. 3 makes it very easy to derive the results of [6-11] pertaining to the behaviour of the 
variable r between two neighbouring extremal values. 

4. EQUATIONS OF MOTION 

The equations governing the variation of the configuration of the triangle are as follows: 

= 

where ~ denotes the variables y and ¥. We introduce a new variable angle 0 defined by 

2r2dO/dt = ~1 

Then 

a F .  , ,.,cosv ] OF; OY;  
~L~_ v _ -(,2s + , . ,w = ~ ~v + ~v 

d [IX , 'nv]_l.tOF2* , ~6" , r"+' 3Fo 
~ L ~  y "3s 2 ~y ~y 

r n+3 ~Fo* 
f~2 OW 

where now 

F2* = 1(~1/,2 +y,2) 

l 
El* =-7[~3(~1/  COS~l/+ y'sill ~1/)-(1"1"2 + I-t3)eY~ '] 

FO. _ f M  [i.tle_(n+l)y/2 +tJ.2e(n+i)y/2 +l't3( ey +e  -y _2cos¥)(n+l)/2]s_(n+i)12 
n + l  

The prime denote:s differentiation with respect to 0, and r is replaced by ~/2r. 
After evaluating the derivatives and performing the necessary reduction, we obtain the system 

d ( V ' )  2y" ! ~F 2 r n+3 ~F o 
+ 

d_.d.( y"~ 2 W" 1 3F 2" r n+3 OF o 

a0t~-J=-T+7-~-y + ~2 ~y 

(4.a) 
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Finally, adding the equation for r to system (4.1) 

r = rF 2 + - - - v + ( n  + l)rnFo 
r- (4.2) 

we obtain a compact system of differential equations describing the plane unrestricted three-body 
problem. 

Let us evaluate the derivatives of the function F~ 

~F °* = - fM~ 3p-(n+ 3)/2 ( Pq ~n-I)/2 - Q)e y sin W 

~F- O* = - fMp-(n+ 3 )/2 [l.t2 ( Pp(n-l )/2 - Q )e y + l.t 3 ( Pq (n-l)~2 - Q )( e r - c o s  ~/)]e y 
$y 

As m 2 ~ 0 we have Ix2/~t --'> 1/ml ,  ~t3/~ --4 l /m0,  and in that case Eqs (4.1) and (4.2) yield a version of 
the problem in which the mass of P2 is negligibly small compared to the masses of P0 and P1. The 
equations of motion of the limiting problem are 

--~(e2Y~l/') = -2e2ry" fMrl "+3 ml[(l +e 2y - 2e y COS ~/) (n-l)/2 _ l](e y - cos W)e y 

fMrln+3 x 
_ .~(e2yy, )=2e2y~,+e2y(ql ,2  + y , 2 )  ~2 

x { m o ( e  ~y - e y ) e  y + m l  I(l + e 2y - 2e y cos ~t) ~-1)/2 - l](e y - cos ¥)e  ~ } 

(4.3) 

2 

7 ' 

The body P2 of zero mass obviously has no influence on the finite-mass bodies P0 and P1- Consequently, 
in the limit as m2 ~ 0 Eqs (4.1) and (4.2) of the unrestricted three-body problem imply Eqs (4.3) of 
the restricted three-body problem. The latter is described by Lagrange's equations with Lagrangian 

L=ta+L +t  

I., 2 2e2Y(~ '2  +y'2),  1.q=. " _- e2V~4/' 

[Mr n+3 t : 
_ JJ ] I m fptn+l)/2 n + 1 --,)+m, 

p -- e 2y, q = ! + e 2y - 2e y cos ¥ 

and in the case of the circular restricted problem (rl = const) we have an energy integral 

L2 - L0 = con s t  

Thus, the restricted problem describes only the variation in the configuration of the triangle PoP1P2, 
not in its size. 

In the restricted three-body problem, one studies the motion of a point of zero mass in the field of 
attraction of two bodies of finite mass, on the assumption that the zero-mass body P2 has no influence 
on the motion of the bodies P0 and P1- 

However, a slight change in the motion of P0 and P1 may have a major influence on the motion of 
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P2. Thus, if the originally circular orbit of P0 and P1 is replaced by a neighbouring elliptical orbit, 
parametric reson~Lnce and instability of the triangular libration points may occur [24]. If the body is of 
relatively small--but not zero---mass, then P2 will affect the motion of P0 and P1, and this may imply 
qualitatively new conclusions [25] compared to the restricted formulation of the problem. Finally, the 
fact that system (4..1) is "almost separable" from Eq. (4.2) should lead to new qualitative results in the 
three-body problem, at least for small m2. 

5. THE N E I G H B O U R H O O D  OF THE LIBRATION POINTS 

The stationary points of the new function F~(~,y) represent the motion of the system P0, P1, P2 with 
a fixed triangle configuration. In that situation the body P2 is situated at one of the classical libration 
points Lj, and the variable r obeys the equation 

~2 
r = r--3-+(n+ l)rnFo(L/) (5.1) 

where the function F~ is evaluated at Lj. This equation has a periodic solution--in particular, a constant 
solution--for any n > -3. 

Let us form the variational equations in the neighbourhood of the constant solution corresponding to 
some point Lj. It turns out that the equation for r has the same form as if it had been set up for Eq. (5.1) 

8r'" = - (n + 3)~r (5.2) 

Hence it is clear that when n > -3 constant solutions correspond to a pair of pure imaginary roots 
of the characteristic equation. Irrespective of the dependence on the values of the other roots, system 
(4.1), (4.2) has a Lyapunov family of local periodic motions in the neighbourhood of the periodic solution 
under consideration. This is in fact clear, since Eq. (5.1) has not only a constant solution, but also a 
neighbouring periodic solution. In addition, there is a Lyapunov family in the neighbourhood of any 
periodic solution with fixed triangle configuration, and this family may be extended globally until the 
constant energy integral vanishes. 

Let us now consider constant collinear libration points. These points are saddle points of F~ and so 
the variational equations for the variablesy, V, which are easily derived from (4.1), have a pair of pure 
imaginary roots and a pair of roots with non-zero real parts that have opposite signs. The pair of pure 
imaginary roots represents the second family of Lyapunov periodic motions surrounding the libration 
points (Fig. 4) and symmetric about the fixed set M. 

The two Lyapunov families of periodic motions are obtained when two-dimensional tori degenerate 
over suitable manifolds. These tori are "whiskered"; to a pair of roots with non-zero real parts there 
correspond two families of motions that are asymptotic to the tori as t ~ +oo and t ~ --~. 

In the neighbou~rhood of the triangular libration points, Eqs (4.1) become 

x"+2y" = u[3(mi +m2)x+ ~34 (m , -m2)y]+ ... 

y"-2x'=u{ ~34 (m , -m2)x+[1-3(n h+m2)ly}+. . .  

(5.3) 

where 

x=~-ltl3,  u= fM(l-n)pn+3 /~,  

and the relationship between p and 0 is given by the equation 

p.. = 132p-3 _ fMpn, p2 d0 

13. = l i l y  

r = vrvp (5.4) 
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Applying the Lyapunov transformation [3] 

X = y +  sx. Y = x - s y  

s = [3 (m,  + m2)-)~][ - -~(m ~ -m2) ]  -I , 0 
4 

we can reduce system (5.3) to the form 

X " - 2 Y ' = ( 1 - ~ , ) u X +  .... Y " + 2 X ' = L u Y + . . .  (5.5) 

and we obtain, in the linear approximation, a linear reversible system. For constant triangular solutions 
we have 

fMP = B], u = (1 - .) 

and the roots of the characteristic equation are 

+ 3) + 4(n + 3) 2 - 3(n - 1) 2 v 
x 2 

2 

Therefore, the necessary conditions for Routh-Zhukovskii  gyroscopic stabilization become 

v <  l ( 3 + n ~  2 (5.6) 

Under these conditions, the neighbourhood of the triangular libration points is filled by three- 
dimensional tori which may degenerate into two-dimensional tori or into Lyapunov families of periodic 
motions. If conditions (5.6) are strongly violated, the neighbourhood will consist of periodic triangular 
solutions (a Lyapunov family corresponding to a constant configuration) and motions asymptotic to 
them as t ~ +oo and t ---) -00. 

Suppose that the constant value h ,  of the energy integral corresponds to constant triangular solutions. 
Then, for small h - h, ,  periodic triangular solutions close to the constant ones exist. The period of these 
motions as functions of 0 depends on h - h ,  and equals 2n only when h = h, .  

Let us investigate the stability of the linear system (5.5) in that case. The function u(0) is the sum of 
a constant (1 - n) and a function periodic in 0 that vanishes at h = h , .  Therefore, we have to investigate 
a quasi-autonomous reversible system--for details, see [26]. 

Let condition (5.6) be satisfied. Then xj = +_ikj (kj > 0, j  = 1, 2), where 

n + 3 + 4 ( n + 3 )  2 - 3 ( n -  I)Zv k 2 
1,2 ~" 2 

According to [26], when there is no parametric resonance 

2k l = N ,  2k 2 = N ,  k I + k  2 = N ,  k I - k  2 = N  ( N ~ N )  

the characteristic exponents of the linear system are pure imaginary if l h - h ,  I is small enough. We have 

L2 Pl 

Fig. 4. 
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Therefore 

k2 +k~=n+3, 2k, k2=ln- l [ .~  

(k~ +k2) 2 = n + 3 + l n - l l ~ r ~ <  2(n+3) 

and when -3 < n < -1 there are only two possible two-frequency resonances kl --- k2 = 1. This happens 
when v = 1/3(n + 2)2/(n - 1) ~, with the plus sign when -3 < n < -2  and the minus sign for -2  < n < 
-1. Next 

(n+3)12<k 2<(n+3), 0<k~<k~  

and the following single-frequency resonances are possible in the range of n values under 
consideration 

2k~--=l (-2. 75 < n ~< -2. 5), 2k2=! ( -2 .5~<n<-1)  for v =  

4 n+2  
k l = l  ( - 2 < n - l )  for v = - -  

3 (n - 1) 2 

4 n + l l  
12(n - 1) 2 

Consequently, the results obtained in [26] imply the following theorem. 

Theorem 3. Periodic triangular motions of the unrestricted three-body problem sufficiently close to 
constant motions are stable in the linear approximation if 

v< l ( n * 3 ~  2 l ( n + 2 ~  2 4 n + l l  4 (n+2) ( - 3 < n < - I )  
: ~ , - ~ - l ) ;  v~3t, n - ~ ) '  12(n-,) 2' 30 , - i )  2 

Remark. The result formulated in this theorem is due to Lyapunov [3]. It is proved here as a coronary 
of the fact that system (5.5) is reversible and refined, in the sense that resonance values of v are 
eliminated. 

We will now con:sider the case of arbitrary eccentricities. For any n > -3, Eq. (5.1) has only periodic 
solutions. This means, in particular, that when n > -3 Eq. (5.2) has pure imaginary characteristic 
exponents. Consequently, when n > -3  the problem of the stability of triangular solutions (circular and 
elliptical) is solved in the linear approximation by system (5.5), which describes the variation in the 
configuration of the triangle PoPIP2. On the other hand (Section 4), the variation of the configuration 
may be investigated within the framework of the restricted three-body problem. 

We have thus established the following theorem. 

Theorem 4. When n > -3 the problem of the stability in the linear approximation of triangular solutions 
of the three-body problem in the general (unrestricted) formulation is equivalent to the same problem 
in the restricted formulation. 

System (5.5) settles the question of stability both in the unrestricted problem and in the special case 
that we know as the restricted problem. In all cases, the essential parameter is ~, which is defined in 
the restricted problem as v = IX(1 - IX), where IX = ml. In the case of Newtonian interaction (n = -2) 
the domain of stability for the restricted three-body problem was determined by Danby in [27], in the 
(Ix, e) plane. Thus, the domain of stability for the general case is derived from Danby's domain, but 
now in the (v, e) plane. This domain is shown in Fig. 5. The resonance curves constructed in Danby's 
domain [24] are also preserved. 

Theorem 5. For n = -2  and arbitrary eccentricities 0 ~< e < 1 triangular Laplace solutions of the 
general (unrestricted) three-body problem are stable everywhere in Danby's domain of stability 
mapped into the (v, e) plane, where v = p(1 - IX), and Ix is the relative mass in the restricted three- 
body problem. 
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0 0.02 1/36 0.04 

Fig. 5. 

6. THE I N F L U E N C E  OF THE BODY P2 ON THE M O T I O N  OF P0 AND 
P1. R E S O N A N C E  I N S T A B I L I T Y  

It follows from the equations of motion (4.1) and (4.2) that, if the relative mass m2 of P2 is small, 
the influence of P2 on the motion of P0 and P1 will be weak. In general, the bodies P0+and P1, in turn, 
will strongly affect the body P2. However, this influence is limited by the coefficient of r ~ 3 in the formula 
for the force, and for small changes in r the changes in the solutions of the equations for ~ andy would 
appear to be small. 

Let us consider two cases in which the size of the triangle and its configuration affect one another 
strongly. In the first case the originally circular orbit of the bodies P0 and P1 is replaced by a neighbouring 
elliptical orbit, and the change turns out to be "fatal" for the motion of P2 in the neighbourhood of a 
triangular libration point. In the second case the interaction is non-linear, and not only do P0 and P1 
"strongly" affect P2, but the converse is also true: P2 "strongly" affects the motion of P0 and Pv Both 
cases belong to the resonance category. With an eye on the qualitative picture only, we shall confine 
our attention to the case of Newtonian interaction (n = 2). 

Let v = 1/36. One then has a parametric resonance 2k2 = 1 in the elliptical problem. At the same 
time, as follows from (5.2), we have a frequency k0 = ~/(n + 3) in the circular problem, and when n = 
-2  one obtains an internal resonance k0 = 2k2 [28, 29]. As can be seen from system (4.3), the resonance 
k0 = 2k2 does not cause resonance instability when m2 = 0, but at resonance 2k2 = 1 the triangular 
libration points of the restricted three-body problem are unstable [24]. 

1. Let us consider the stability of the Lagrangian solutions at parametric resonance 2k2 = 1. When 
n = -2  Eqs (5.4) are the equations of Keplerian motion for a point of unit mass attracted to the origin 
by a point of mass M. In motion about an ellipse with semi-major axis a we have 

a ( l - e  2) 3 

P= l + e c o s O '  U = l + e e o s O  

(e is the eccentricity). Therefore, our problem reduces to investigating the linear periodic system 

X"-2Y'=(I-~.)uX, Y"+2X'=~.uY 

for small e. 
Let us expand u(0) in Fourier series 

u = 3(1 - e2)-~[l  - e  I cos0+ e 2 cos 20+ ...], 

(L 2 -~ .+  1 / 48 = 0) 

e I = e / ( I  + ~ / I - e  2 ) 

(6.1) 

The roots of the characteristic equation of the averaged system will therefore be 
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×22(e) = - ( 4 - u )  + 3 / (4-  ~)2 - 3 v ~  2 . f f=3 /~ / l_e  2 
2 

and the numbers ~:(e) are pure imaginary when 

v ~< (4 - ~)2 / (3~2) (6.2) 

Consequently, if this condition is satisfied, the Lagrangian periodic solutions are stable [26] in the 
linear approximation, provided there are no second-order resonances. Note that in (6.2) it is surely 
true that v ~< 1/27. 

For small e there is a single second-order resonance in the domain (6.2), namely, 2×2 = i. In that 
case 

v = ( 5  l ~ - e  2 - 4 )  13/1--~-e 2 /36 

and system (6.1) becomes 

zl = ×l(e)zl + .... Z2 = x2(e)z2 +eR(e)exp(iO)z2 + ... 

where z and ;~ are complex-conjugate variables. I fR(e)  ~ 0, parametric resonance leads to instability. 
To determine the resonance coefficient R(e), we change the variables 

Zt = ¢Xt7[(2i + x I )p + p'  + (×l - 2i)q] + (×~ - 2ix I - ~" / 2)q' 

Z2 = 0~[(2i + ×2 )P + P' + (×2 - 2i)q] + (×2 - 2i× 2 - ~ / 2)q' 

p = X + i Y ,  q = X - i Y ,  a = l / 2 - k  

Then F-xlS (6.1) become 

F o r p  and q on tlhe right of this equation one must substitute the expressions 

p=io~u(Zl + Z2'-i(×12 +2i× I - 2 ) Z l -  i(×2 + 2 i x 2 - 2 )  Z2 

q =-iot~(~ I + ~ 2 ) + i ( × ~ - 2 i × 1 - 2 / Z l  + i ( x ~ - 2 i × 2 - 2 )  Z2 

j -- 1, 2 (6.3) 

(6.4) 

In view of formulae (6.3) and (6.4), the formula for R(e) is 

R(e)= 3tx~i (~2 +0~2~_ i +3v ~) 
2(| + l a / ~ - e  2 ) 4 

Noting that 

× 2 = i / 2 ,  tx2=11/48,  ~ = 3 +  .... v = 1 / 3 6 + . . .  

we obtain R(e) # 0, and moreover R(0) # 0. 
Consequently, the resonance 2×2 = i. induces instability. This conclusion follows from an analysis of 
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the terms linear in e. Therefore, if the resonance condition is satisfied up to terms of order e 2, all our 
previous conclusions remain valid. Under these conditions the characteristic exponents of system (6.1) 
are ±eR(O) ± i/2 + O(e2). A domain of instability appears in the (v, e) plane in the neighbourhood of 
the point (1/36, 0). This is a well-known result for the restricted problem [24]. 

Theorem 6. An elliptical Lagrangian solution close to a circular solution is unstable at v = 1/36. 
2. Let us consider the stability of constant Lagrangian solutions at resonance/Co = 2k2. As follows 

from [30, 31], in this case resonance instability is derived from the following system, normalized up to 
terms of second order inclusive and expressed in terms of complex-conjugate variables z and 2" 

Zo = iZo + iBoz~ +...  

Zi = iklzl + .. . .  Z2 = -iz2 / 2 + iB2~o~ 2 +...  

where B0 and B 2 are real constants. This system is obtained by a linear transformation of the variational 
equations to normal coordinates, after which one equates all the coefficients of second-order terms, 
except the resonance coefficients, to zero [32]. In addition, the variables z0, 20 correspond to the equation 
for r and the variables zl, 2"1, z2, 2"2 correspond to the equations for V andy. It is now clear from the form 

2 of the resonance terms that the term iBo2~ may be obtained only from rF2 in (4.2), while the term iB~-o~2 
is determined only by terms involving r n+3 in (4.1). 

The above considerations considerably simplify the computation of the coefficients B0 and B2. Thus, 
B 2 already apj~ears in the written-out part of system (5.3) if one puts u = 3(1 + ~); in unperturbed 
motion, r = ~/(v)p,fM 9 = []2.. 

We will first use (5.2) to get an equation for z0 from (4.2). We have 

~ , , + ~ =  I.t t . ,2+y ,2)+  
$2 ~F "" 

where we have actually written out only those quadratic terms that make a contribution to B 0. In variables 

Z o = ~ - i ~  ", ~0=~+i~  ' 

we then obtain 

Zo = izo - }'ti t" ,2 +y ,2 )+ . . .  
$2 ~W 

Now, applying the linear transformation 

2(1-;Z)u . .  2gu y 2;Zl X' Y' 
Z j = ~ - -  .~---.,'~ + ~  

Xu-~ , j  X~ - ~  + 

2(1- X)u x -  ~u y÷ 2X~ j = l , 2  
(6.5) 

where Xx = -i~/(3)/2, L2 = -i/2 are the roots of the characteristic equation, u = 3, we transform the 
linear part of system (5.5) to normal coordinates. Then system (5.5) takes the form 

2Z, j 
Z; = ~ , j Z j  ~U---'----~j (l-~,)u~X+~,u~Y+ . . . .  

Let us find the inverse transformation 

j = 1,2 (6.6) 

x = 4(I- X)uO,~ - ~.~) [(zt + ~)-(z2 + ~2)I 
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, 2  
'= 

.J 

-- > 

1 

(6.7) 

Now, using the relations 

¥,2 +y,2 = x,2 +y,2 =(X,2 + y,2)/(1+$2 ) 

we calculate the oaeflicient B0 

ft(~O~- 2L~ ) t(Ttu _ Z2)2 Z2 + 4Z2u2 l 
Bo -- - 16v2(! + s2 )~i2u2(~L2 _ ~i,2 ) 

Next, replacing ~ ,an the fight of (6.6) by the expression (z0 + ~0)/2 and replacing X, X', Y, Y" by the 
right-hand sides of (6.7), we obtain 

~'2 i -~2 2 2 2 
B 2 = -  2 -2 t,~u -kj2~ 2] 

4~I1(~d2 - ~l ) 

In the case under consideration 

u=3,  2 ~ , = 1 + ' ~ ' i - ~ ,  ~2=-~4  , ~,2=-~4 ( ~ 2 - - - i / 2 )  

Therefore BoB 2 > 0 and we obtain instability. 

Theorem 7. Constant Lagrangian solutions are unstable when 

v = morn  I ÷ morn 2 + m i r a  2 = 1 1 3 6  

Remark. Instability at resonance k0 = 2k2 occurs for any -3  < n < -1  [29]. The analytical proof of  
this statement fol]Lows the same lines as in the case of Newtonian interaction. The transformation 
formulae (6.5) and (6.7) hold for any n. 

7. S Y M M E T R I C  P E R I O D I C  M O T I O N S  F O R  S M A L L  ml AND m 2 

Turning now to system (4.1), (4.2), let us investigate the case in which the mass of  the body P0 is 
significantly greater than those of P1 and I'2. Letting the parameters m 1 and m2 tend to zero, we obtain 
the limiting problem 

- •  (e2)'¥ ') = -2e2.Vy" 

jgWr n+3 (e.y - eY)e ~' d(e2) 'y , )  = 2e2).~, + e2y(¥,2 + y,2) _ T 

r'" - ~ + SMr n = O. r2 dO Tr=P. 

(7.1) 

This system has a periodic solution which is symmetric with respect to the fixed set M 

y=yo(const) ,  ¥ = t e 0 ,  r=r0(const),  y ' = 0 ,  ¥ ' = t o ,  r ' = 0  (7.2) 
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where 

- -  . - -  n + 3  ( o 2 + 2 ( o + 1  e( ' - ' ) ' °  =O, f~ - fMro (7.3) 

In  this solution the bodies P1 and P2 describe circles about  P0, at respective angular velocities ~. /r  2 
and (to + 1)~./~.  Depending on the sign of  to + 1, mot ion takes place in one  direction or  in two opposite 
directions. 

We now consider the problem of  continuing the mot ions  (7.2) to small parameters  ml  and m2. To 
that  end, using the previous results of  [33], we set up the variational equat ions for  (7.1) 

8 ~ "  = -28y" l to 

By" = 2(1 + t o ) 8 ~ '  I to  - [ e  t ' - I  )yo (n - i )8 3, - (n + 3)8~] / to2 

~ " ' + ( n + 3 ) ~ / t o  2 = 0 ,  r = r o ( l +  ~) 

(7.4) 

where the prime now denotes  differentiation with respect  to the variable toO. 
The  characteristic equat ion of  this system has a pair  of  zero roots  with one g roup  of  solutions. These 

roots can be cont inued with respect to the parameters  [33]. Therefore ,  the problem of  whether  the 
mot ions  can be cont inued is solved using the remaining roots, which are 

Then  [33], when 

xt, 2 = + i~f f f -~  / to, x3, 4 = +~/(1 - n)exp{(n - l)y0} - 3 / to 

n +  3 *  N2to 2, 3 + ( n - l ) e x p { ( n - i ) y o }  ~ N2to 2 ( N ~ N )  

symmetr ic  periodic solutions near  (7.2), (7.3) exist for  sufficiently small ml  ~ 0, m2 4: 0. 
We might  ment ion that  the question o f  whether  o ther  types o f  symmetric  periodic orbits exist has 

been  considered for Newtonian interaction in [34] within the f ramework  of  the many-body problem. 
I wish to thank the participants of  the seminar directed by V. V. Rumyantsev  and A. V. Karapetyan 

for  discussing this research. 
The  research was carried out  with financial support  f rom the Russian Foundat ion  for Basic Research 
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